
Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 3: Draw & Impress Modules

Chapter 11. Draw/Impress APIs Overview

This part discusses the APIs for both Draw and Impress

since the presentations API is an extension of Office's

drawing functionality, adding such things as slide-related

shapes (e.g. for the title, subtitle, header, and footer), more

data views (e.g. an handout mode), and slide shows.

You'll get a good feel for the APIs' capabilities by reading

the Draw and Impress user guides, downloadable from

https://www.libreoffice.org/get-help/documentation/.

Details about the APIs can be found in Chapter 9 of the Developer's Guide, starting at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Drawings/Drawing_Docu

ments_and_Presentation_Documents (or type loGuide draw). The guide can also be

retrieved as a PDF file from

https://wiki.openoffice.org/w/images/d/d9/DevelopersGuide_OOo3.1.0.pdf.

The guide's drawing and presentation examples are online at

http://api.libreoffice.org/examples/DevelopersGuide/examples.html#Drawing, and

there's a short Draw example in

http://api.libreoffice.org/examples/examples.html#Java_examples.

This chapter gives a broad overview of the drawing and presentation APIs, with some

small code snippets to illustrate the ideas. Subsequent chapters will return to these

features in much more detail.

The APIs are organized around three services which subclass OfficeDocument, as

depicted in Figure 1.

Figure 1. The Drawing and Presentation Document Services.

The DrawingDocument service, and most of its related services and interfaces are in

Office's com.sun.star.drawing package (or module), which is documented at

http://api.libreoffice.org/docs/idl/ref/namespacecom_1_1sun_1_1star_1_1drawing.ht

ml. Or you can reach it using lodoc drawing module reference.

The presentation API is mostly located in Office's com.sun.star.presentation package

(or module), which is documented at

http://api.libreoffice.org/docs/idl/ref/namespacecom_1_1sun_1_1star_1_1presentation

.html. You can also find it with lodoc presentation module reference.

Topics: Draw Pages and

Master Pages; Draw

Page Details; API

Hierarchy Code

Examples; Shapes in a

Drawing; Shapes in a

Presentation ; The Slide

Show APIs

Example folders: "Draw

Tests" and "Utils"

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

Figure 2 shows a more detailed version of Figure 1 which includes some of the

interfaces defined by the services.

Figure 2. Drawing and Presentation Document Services and Interfaces.

The interfaces highlighted in bold in Figure 2 will be discussed in this chapter.

The DrawingDocument service is pretty much empty, with the real drawing 'action' in

GenericDrawingDocument (which is in the com.sun.star.drawing package).

PresentationDocument subclasses GenericDrawingDocument to inherit its drawing

capabilities, and adds features for slide shows (via the XPresentationSupplier and

XCustomPresntationSupplier interfaces).

The word "presentation" is a little overloaded in the API – PresentationDocument

corresponds to the slide deck, while XPresentationSupplier.getPresentation() returns

an XPresentation object which represents a slide show.

1. Draw Pages and Master Pages

A drawing (or presentation) document consists of a series of draw pages, one for each

page (or slide) inside the document. Perhaps the most surprising aspect of this is that a

Draw document can contain multiple pages.

A document can also contain one or more master pages. A master page contains

drawing/slide elements which appear on multiple draw page. This idea is probably

most familiar from slide presentations where a master page holds the header, footer,

and graphics that appear on every slide.

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

As illustrated in Figure 2, GenericDrawingDocument supports an

XDrawPagesSupplier interface whose getDrawPages() returns an XDrawPages object.

It also has an XMasterPagesSupplier whose getMasterPages() returns the master

pages as an object. Office views master pages as special kinds of draw pages, and so

getMasterPages() also returns an XDrawPages object.

Note the "s" in "XDrawPages": an XDrawPages object is an indexed container of

XDrawPage (no "s") objects, as illustrated by Figure 3.

Figure 3. The XDrawPages Interface

Since XDrawPages inherit XIndexAccess, its elements (pages) can be accessed using

index-based lookup (i.e. to return page 0, page 1, etc.).

2. Draw Page Details

A draw page is a collection of shapes: often text shapes, such as a title box or a box

holding bulleted points. But a shape can be many more things: an ellipse, a polygon, a

bitmap, an embedded video, and so on.

This "page as shapes" notion is implemented by the API hierarchy shown in Figure 4.

Figure 4. The API Hierarchy for a Draw Page.

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

XPresentationPage is the interface for a slide's page, but most of its functionality

comes from XDrawPage (see loDoc XPresentationPage). The XDrawPage

interface doesn't do much either, except for inheriting XShapes (note the "s").

XShapes inherits XIndexAccess, which means that an XShapes object can be

manipulated as an indexed sequence of XShape objects.

The XDrawPage and XPresentationPage interfaces are supported by services, some of

which are shown in Figure 5. These services are in some ways more important than

the interfaces, since they contain many properties related to pages and slides.

Figure 5. Some of the Draw Page Services.

There are two DrawPage services in the Office API, one in the drawing package, and

another in the presentation package. This is represented in Figure 5 by including the

package names in brackets after the service names. You can access the documentation

for these services by typing lodoc drawpage service drawing and lodoc

drawpage service presentation.

No properties are defined in the drawing DrawPage, instead everything is inherited

from GenericDrawPage.

I've put "(??)" next to the XDrawPage and XPresentationPage interfaces in Figure 5

because they're not listed in the GenericDrawPage and presentation DrawPage

services in the documentation, but must be there because of the way that the code

works. Also, the documentation for GenericDrawPage lists XShapes as an interface,

rather than XDrawPage.

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

3. API Hierarchy Code Examples

Some code snippets will help clarify the hierarchies shown in Figures 2-5. The

following lines load a Draw (or Impress) document called "foo" as an XComponent

object.

XComponentLoader loader = Lo.loadOffice();

XComponent doc = Lo.openDoc("foo", loader);

A common next step is to access the draw pages in the document using the

XDrawPagesSupplier interface shown in Figure 2:

XDrawPagesSupplier supplier = Lo.qi(XDrawPagesSupplier.class, doc);

XDrawPages pages = supplier.getDrawPages();

This code works whether the document is a sequence of draw pages (i.e. a Draw

document) or slides (i.e. an Impress document).

Using the ideas shown in Figure 3, a particular draw page is accessed based on its

index position. The first draw page in the document is retrieved with:

XDrawPage page = Lo.qi(XDrawPage.class, pages.getByIndex(0));

Pages are numbered from 0, and a newly created document always contains one page.

The XDrawPage interface is supported by the GenericDrawPage service (see Figure

5), which holds the page's properties. The following snippet returns the width of the

page and its page number:

int width = (Integer)Props.getProperty(page, "Width");

int pageNumber = (Short)Props.getProperty(page, "Number");

The "Width" and "Number" properties are documented in the GenericDrawPage

service page at

http://api.libreoffice.org/docs/idl/ref/servicecom_1_1sun_1_1star_1_1drawing_1_1Ge

nericDrawPage.html (or use lodoc GenericDrawPage service).

Once a single page has been retrieved, it's possible to access its shapes (as shown in

Figure 4). The following code converts the XDrawPage object to XShapes, and

accesses the first XShape in its indexed container:

XShapes shapes = Lo.qi(XShapes.class, page);

XShape shape = Lo.qi(XShape.class, shapes.getByIndex(0))

4. Shapes in a Drawing

Shapes fall into two groups – drawing shapes that subclass the Shape service in

com.sun.star.drawing, and presentation-related shapes which subclass the Shape

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

service in com.sun.star.presentation. The first type are described here, and the

presentation shapes in section 5.

Figure 6 shows the com.sun.star.drawing Shape service and some of its subclasses.

Figure 6. Some of the Drawing Shapes.

I'll be explaining many of these shapes in Chapters 13 and 15, but you can probably

guess what most of them do – EllipseShape is for drawing ellipses and circles,

LineShape is for lines and arrows, RectangleShape is for rectangles.

The two "??"s in Figure 6 indicate that those services aren't shown in the online

documentation, but appear in examples.

The hardest aspect of this hierarchy is searching it for information on a shape's

properties. Many general properties are located in the Shape service, so are

documented on the Shape page (use lodoc shape service drawing to reach it).

More specialized properties are located in the specific shape's service. For instance,

RectangleShape has a "CornerRadius" property which allows a rectangle's corners to

be rounded to make it more button-like.

Unfortunately, most shapes inherit a lot more properties than just those in Shape.

Figure 7 shows a typical example – RectangleShape inherits properties from at least

eight services (I've not shown the complete hierarchy)!

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

Figure 7. RectangleShape's Properties.

Aside from RectangleShape inheriting properties from Shape, it also obtains its fill,

shadow, line, and rotation attributes from the FillProperties, ShadowProperties,

LineProperties, and RotationDescriptor services. For instance, to make the rectangle

red, the "FillColor" property, defined in the FillProperties service, must be set. The

code for doing this is not complex:

Props.setProperty(shape, "FillColor", 0xFF0000);

 // hexadecimal for red

The complication comes in knowing that a property called "FillColor" exists. Visit the

shape's service documentation (e.g. the RectangleShape page at

http://api.libreoffice.org/docs/idl/ref/servicecom_1_1sun_1_1star_1_1drawing_1_1Re

ctangleShape.html, or use lodoc RectangleShape service), and look inside each

inherited Property service until you find the relevant property.

If the shape contains some text (e.g. the rectangle has a label inside it), and you want

to change one of the text's properties, then you'll need to look in the three property

services above the Text service (see Figure 7).

Changing text requires that the text be selected first, which takes us back XText and

Chapter 5. For example, the text height is changed to 18pt by:

XText xText = Lo.qi(XText.class, shape);

XTextCursor cursor = xText.createTextCursor();

cursor.gotoStart(false);

cursor.gotoEnd(true); // select all text

Props.setProperty(cursor, "CharHeight", 18);

First the shape is converted into an XText reference so that text selection can be done

using a cursor.

The "CharHeight" property is inherited from the CharacterProperties service.

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

Figure 7 doesn't show all the text property services. For instance, there are also

services called CharacterPropertiesComplex and ParagraphPropertiesComplex.

5. Shapes in a Presentation

If the document is a slide deck, then presentation-related shapes will be subclasses of

the com.sun.star.presentation.Shape service (see the documentation with lodoc

shape service presentation). Some of those shapes are shown in Figure 8.

Figure 8. Some of the Presentation Shapes.

The com.sun.star.presentation.Shape service doesn't subclass the

com.sun.star.drawing.Shape service. Instead, every presentation shape inherits the

presentation Shape service and a drawing shape (usually TextShape). This means that

all the presentation shapes can be treated as drawing shapes when being manipulated

in code.

Most of the presentation shapes are special kinds of text shapes. For instance,

TitleTextShape and OutlinerShape are text shapes which usually appear automatically

when you create a new slide inside Impress – the slide's title is typed into the

TitleTextShape, and bulleted points added to OutlinerShape. This is shown in Figure

9.

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

Figure 9. Two Presentation Shapes in a Slide.

Using OutlinerShape as an example, its 'simplified' inheritance hierarchy looks like

Figure 10.

Figure 10. The OutlinerShape Hierarchy.

OutlinerShape has at least nine property services that it inherits.

6. The Slide Show APIs

One difference between slides and drawings is that the presentations API supports

slide shows. This extra functionality can be seen in Figure 2 since the

PresentationDocument service offers an XPresntationSupplier interface which has a

getPresentation() method for returning an XPresentation object. Don't be confused by

the name – an XPresentation object represents a slide show.

Java LibreOffice Programming. Chapter 11 Draw/Impress Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

XPresentation offers start() and end() methods for starting and ending a slide show,

and the Presentation service contains properties for affecting how the show

progresses, as illustrated by Figure 11.

Figure 11. The Slide Show Presentation Services.

Code for starting a slide show for the "foo" document:

XComponentLoader loader = Lo.loadOffice();

XComponent doc = Lo.openDoc("foo", loader);

XPresentationSupplier ps = Lo.qi(XPresentationSupplier.class, doc);

XPresentation show = Lo.qi(XPresentation.class,

 ps.getPresentation());

show.start();

The Presentation service is a bit lacking, so an extended service, Presentation2, was

added more recently. It can access an XSlideShowController interface which gives

finer-grained control over how the show progresses; I'll give examples later.

